294 research outputs found

    A 'G' chromosome banding study of three cupped oyster species: Crassostrea gigas, Crassostrea angulata and Crassostrea virginica (Mollusca: Bivalvia)

    Get PDF
    The G-banding technique was performed on chromosomes from gill tissue of three cupped oyster species : Crassostrea gigas, Crassostrea angulata and Crassostrea virginica. Identification of the ten individual chromosome pairs was obtained. Comparative analysis of G-banded karyotypes of the three species showed that their banding patterns generally resembled each other, with chromosome pair 3 being similar in all three species. However, differences from one species to another were also observed. The G-banding pattern highlighted greater similarities between C. gigas and C. angulata than between these two species and C. virginica, thus providing an additional argument for genetic divergence between, these two evolutionary lineages. C. gigas and C. angulata showed a different G-banding patterns on the two arms of chromosome pair 7, which agrees with teir taxonomic separation. The application of this banding technique offers a new approach to specific problems in oyster taxonomy and genetics

    The Kinome of Pacific Oyster Crassostrea gigas, Its Expression during Development and in Response to Environmental Factors

    Get PDF
    Oysters play an important role in estuarine and coastal marine habitats, where the majority of humans live. In these ecosystems, environmental degradation is substantial, and oysters must cope with highly dynamic and stressful environmental constraints during their lives in the intertidal zone. The availability of the genome sequence of the Pacific oyster Crassostrea gigas represents a unique opportunity for a comprehensive assessment of the signal transduction pathways that the species has developed to deal with this unique habitat. We performed an in silico analysis to identify, annotate and classify protein kinases in C. gigas, according to their kinase domain taxonomy classification, and compared with kinome already described in other animal species. The C. gigas kinome consists of 371 protein kinases, making it closely related to the sea urchin kinome, which has 353 protein kinases. The absence of gene redundancy in some groups of the C. gigas kinome may simplify functional studies of protein kinases. Through data mining of transcriptomes in C. gigas, we identified part of the kinome which may be central during development and may play a role in response to various environmental factors. Overall, this work contributes to a better understanding of key sensing pathways that may be central for adaptation to a highly dynamic marine environment

    RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories.

    Get PDF
    Recent developments in genomics are advancing our understanding of the processes shaping population structure in wild organisms. In particular, reduced representation sequencing has facilitated the generation of dense genetic marker datasets that provide greater power for resolving population structure, investigating the role of selection and reconstructing demographic histories. We therefore used RAD sequencing to study the great scallop Pecten maximus and its sister species P. jacobeus along a latitudinal cline in Europe. Analysis of 219 samples genotyped at 82,439 single nucleotide polymorphisms clearly resolved an Atlantic and a Norwegian group within P. maximus as well as P. jacobeus, in support of previous studies. Fine-scale structure was also detected, including pronounced differences involving Mulroy Bay in Ireland, where scallops are commercially cultured. Furthermore, we identified a suite of 279 environmentally associated loci that resolved a contrasting phylogenetic pattern to the remaining neutral loci, consistent with ecologically mediated divergence. Finally, demographic inference provided support for the two P. maximus groups having diverged during the last glacial maximum and subsequently expanded, whereas P. jacobeus diverged around 95,000 generations ago and experienced less pronounced expansion. Our results provide an integrative perspective on the factors shaping genome-wide differentiation in a commercially important marine invertebrate

    Comparative study of shell shape and muscle scar pigmentation in the closely related cupped oysters Crassostrea angulata, C-gigas and their reciprocal hybrids

    Get PDF
    The taxonomic status of the cupped oysters Crassostrea angulata and C. gigas has received considerable attention in the last decades. Based on larval shell morphology, experimental hybridization, allozymes and nuclear DNA studies several authors have considered these two taxa as being synonymous. However, mitochondrial data showed clear genetic differences between the two taxa. In addition, microsatellite- based studies and cytogenetic studies have also provided evidence that supports their differentiation. Considerable differences have also been observed at the phenotypic level in terms of growth rate and ecophysiological parameters. In the present study, C. angulata from Sado estuary ( Portugal) and C. gigas from Seudre estuary ( France) were collected and factorial crosses were performed. Juveniles of the different progenies were reared in Ria Formosa ( Portugal) under common conditions to determine if they exhibited differences in shell shape and in pigmentation of the adductor muscle scar. Significant morphometric differences between C. angulata and C. gigas progenies were indicated by univariate and multivariate analyses. Univariate analysis of size- adjusted shell measurements revealed significant differences between the two taxa for shell depth, muscle scar height, and length of ligamental area. Both reciprocal hybrids showed intermediate morphometric characters between parental lines. In addition, significant differences were also observed between C. angulata and C. gigas progenies in terms of pigmentation of adductor muscle scar. C. angulata and both reciprocal hybrid progenies showed highly pigmented adductor muscle scars whereas in C. gigas progeny the pigmentation was lighter. The differences in shell shape and muscle scar pigmentation observed in the present study support the distinction of the two taxa.info:eu-repo/semantics/publishedVersio

    Detailed insights into pan-European population structure and inbreeding in wild and hatchery Pacific oysters (Crassostrea gigas) revealed by genome-wide SNP data.

    Get PDF
    Cultivated bivalves are important not only because of their economic value, but also due to their impacts on natural ecosystems. The Pacific oyster (Crassostrea gigas) is the world's most heavily cultivated shellfish species and has been introduced to all continents except Antarctica for aquaculture. We therefore used a medium-density single nucleotide polymorphism (SNP) array to investigate the genetic structure of this species in Europe, where it was introduced during the 1960s and has since become a prolific invader of coastal ecosystems across the continent. We analyzed 21,499 polymorphic SNPs in 232 individuals from 23 localities spanning a latitudinal cline from Portugal to Norway and including the source populations of Japan and Canada. We confirmed the results of previous studies by finding clear support for a southern and a northern group, with the former being indistinguishable from the source populations indicating the absence of a pronounced founder effect. We furthermore conducted a large-scale comparison of oysters sampled from the wild and from hatcheries to reveal substantial genetic differences including significantly higher levels of inbreeding in some but not all of the sampled hatchery cohorts. These findings were confirmed by a smaller but representative SNP dataset generated using restriction site-associated DNA sequencing. We therefore conclude that genomic approaches can generate increasingly detailed insights into the genetics of wild and hatchery produced Pacific oysters

    New insights about the introduction of the Portuguese oyster, Crassostrea angulata, into the North East Atlantic from Asia based on a highly polymorphic mitochondrial region

    Get PDF
    It is commonly presumed that the Portuguese oyster Crassostrea angulata was introduced into the North East (NE) Atlantic from Asia. The analysis of the nucleotide sequence of a highly polymorphic non-coding mitochondrial region (major noncoding region - MNR) of C. angulata samples collected in Europe (Portugal), Africa (Morocco) and Asia (Shantou and Taiwan) provided new insight into the introduction of this species into the NE Atlantic. Sixty haplotypes and a nucleotide diversity of 0.0077 were observed in 130 analyzed sequences. Higher nucleotide diversity levels were observed in NE Atlantic sites than in Asian sites and significant genetic differentiation was found between the two. Our results suggest that C. angulata might have been introduced to the NE Atlantic by multiple introductory events, though the exact origins remain unknown since none of the analyzed Asian sites seemed to have been a source of introduction. The nucleotide diversity of C. angulata was higher than that previously reported for Pacific oyster C. gigas in Europe and Asia for the same mitochondrial region. The results obtained in the present study suggest that NE Atlantic C. angulata stocks are a unique genetic resource, which highlights the importance of their conservation

    New insights on the population genetic structure of the great scallop (Pecten maximus) in the English Channel coupling microsatellite data and demogenetic simulations.

    Get PDF
    International audienceThe great scallop (Pecten maximus) is a commercially important bivalve in Europe, particularly in the English Channel, where fisheries are managed at regional and local scales through the regulation of fishing effort. In the long term, knowledge about larval dispersal and gene flow between populations is essential to ensure proper stock management. Yet, previous population genetic studies have reported contradictory results. In this study, scallop samples collected across the main fishing grounds along the French and English coasts of the English Channel (20 samples with temporal replicates for three sites,n= 1059 individuals), and the population genetic structure was analysed using 13 microsatellite loci. Coupling empirical genetic data with demogenetic modelling based on a biophysical model simulating larval exchanges among scallop beds revealed a subtle genetic differentiation between south-west English populations and the rest of the English Channel, which was consistent with larval dispersal simulations. The present study provides a step forward in the understanding of great scallop population biology in the English Channel, underlining the fact that even in a context of potentially high gene flow and recent divergence times since the end of the last glacial maximum, weak but significant spatial genetic structure can be identified at a regional scale

    NORA moving forward: Developing an oyster restoration network in Europe to support the Berlin Oyster Recommendation

    Get PDF
    1. The Native Oyster Restoration Alliance (NORA) supports the protection and ecological restoration of the native European oyster, Ostrea edulis, and its habitat across its current and historical biogeographical range. NORA works to overcome barriers to the conservation, restoration, and recovery of the European oyster by providing a platform for the NORA community to collaborate and participate in knowledge exchange. NORA seeks to support responsible restoration practice, in compliance with biosecurity and sustainability. 2. Against this background, the NORA community formulated a series of specific recommendations, the Berlin Oyster Recommendation, to support native oyster restoration by developing and applying best practice with the aim to recover healthy and resilient marine ecosystems. In combination with the Standards for Ecological Restoration (SER) and the Restoration Guidelines for Shellfish Reefs, the Berlin Oyster Recommendation is a relevant tool for successful and sustainable oyster restoration in Europe. 3. The establishment of NORA working groups will support the implementation and further development of the six corresponding recommendations. Current NORA working groups cover site selection, biosecurity, production, and monitoring. The site selection working group will address the identification of suitable sites for oyster restoration to support policy relevant decision making and the conservation, reinforcement, or reintroduction of native oysters. The biosecurity working group will develop biosecurity guidelines for native oyster restoration in Europe. The production working group will assess the potential of standards for seed oyster production and supply in order to enhance production appropriate for restoration purposes. In close collaboration with the Native Oyster Network – UK & Ireland (NON), the monitoring working group will produce a monitoring guidelines handbook to provide metrics and methods that will be suitable across the range of O. edulis projects in Europe for the documentation of restoration success and ecosystem recovery. 4. The Berlin Oyster Recommendation was examined and interpreted by NORA experts in the context of the further development of joint guidelines for the practice of successful and sustainable native oyster restoration

    Comparing the intestinal transcriptome of Meishan and Large White piglets during late fetal development reveals genes involved in glucose and lipid metabolism and immunity as valuable clues of intestinal maturity

    Get PDF
    Background: Maturity of intestinal functions is critical for neonatal health and survival, but comprehensive description of mechanisms underlying intestinal maturation that occur during late gestation still remain poorly characterized. The aim of this study was to investigate biological processes specifically involved in intestinal maturation by comparing fetal jejunal transcriptomes of two representative porcine breeds (Large White, LW; Meishan, MS) with contrasting neonatal vitality and maturity, at two key time points during late gestation (gestational days 90 and 110). MS and LW sows inseminated with mixed semen (from breed LW and MS) gave birth to both purebred and crossbred fetuses. We hypothesized that part of the differences in neonatal maturity between the two breeds results from distinct developmental profiles of the fetal intestine during late gestation. Reciprocal crossed fetuses were used to analyze the effect of parental genome. Transcriptomic data and 23 phenotypic variables known to be associated with maturity trait were integrated using multivariate analysis with expectation of identifying relevant genes-phenotypic variable relationships involved in intestinal maturation. Results: A moderate maternal genotype effect, but no paternal genotype effect, was observed on offspring intestinal maturation. Four hundred and four differentially expressed probes, corresponding to 274 differentially expressed genes (DEGs), more specifically involved in the maturation process were further studied. In day 110-MS fetuses, IngenuityÂź functional enrichment analysis revealed that 46% of DEGs were involved in glucose and lipid metabolism, cell proliferation, vasculogenesis and hormone synthesis compared to day 90-MS fetuses. Expression of genes involved in immune pathways including phagocytosis, inflammation and defense processes was changed in day 110-LW compared to day 90-LW fetuses (corresponding to 13% of DEGs). The transcriptional regulator PPARGC1A was predicted to be an important regulator of differentially expressed genes in MS. Fetal blood fructose level, intestinal lactase activity and villous height were the best predicted phenotypic variables with probes mostly involved in lipid metabolism, carbohydrate metabolism and cellular movement biological pathways. [b]Conclusions[/b]: Collectively, our findings indicate that the neonatal maturity of pig intestine may rely on functional development of glucose and lipid metabolisms, immune phagocyte differentiation and inflammatory pathways. This process may partially be governed by PPARGC1A
    • 

    corecore